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ANALYSIS OF COMPLEX DECISION PROBLEMS  
BASED ON CUMULATIVE PROSPECT THEORY 

Complex risky decision problems involve sequences of decisions and random events. The choice 
at a given stage depends on the decisions taken in the previous stages, as well as on the realizations of 
the random events that occurred earlier. In the analysis of such situations, decision trees are used, and 
the criterion for choosing the optimal decision is to maximize the expected monetary value. Unfortu-
nately, this approach often does not reflect the actual choices of individual decision makers. In descrip-
tive decision theory, the criterion of maximizing the expected monetary value is replaced by a subjec-
tive valuation that takes into account the relative outcomes and their probabilities. This paper presents 
a proposal to use the principles of cumulative prospect theory to analyse complex decision problems. 
The concept of a certainty equivalent is used to make it possible to compare risky and non-risky alter-
natives.  
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1. Introduction 

Complex decision problems often involve a sequence of decisions and the possible 
realizations of random events. In the analysis of such problems, decision trees are very 
useful and optimal decisions are selected based on the expected monetary value (EMV). 
This criterion is objective and rational but, as e.g., Birnbaum and Navarrete [1] show, 
decision makers sometimes do not act rationally and make decisions based on some 
subjective valuations. 

The rules of prospect theory reflect the subjective valuation of outcomes and their 
probabilities but only in the valuation of simple alternatives. No procedure for the sub-
jective valuation of alternatives in complex decision problems has yet been proposed. 

 _________________________  
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Thus the aim of this paper was to propose a procedure for the analysis of complex de-
cision problems with risky alternatives based on cumulative prospect theory. 

2. Decision trees 

Decision trees are used to graphically represent available decisions, random factors 
and their consequences. They are normally drawn from left to right and consist of deci-
sion nodes (squares), chance nodes (circles), end nodes (triangles) and branches (ar-
rows) leading from one node to another. All decision trees begin with a decision node 
called the root node. The branches emerging from the root node and other decision 
nodes represent the set of available decisions (alternatives). Only one of these alterna-
tives can be selected. The realization of a decision may lead to a final outcome (end 
node, also called a leaf node), a random event (chance node) or another decision prob-
lem (decision node). The branches emerging from a chance node represent possible re-
alizations of the corresponding random event and their probabilities. As a result of the 
realization of a random event, three types of situation can take place: the decision maker 
has to make another decision, another random event occurs or the final outcome is ob-
tained. 

The standard way of analysing a decision tree is called backward induction, which 
is carried out from the end nodes to the root node. It is assumed that the alternatives 
emerging from a node are disjoint, as are the realizations of a random event. At the 
chance nodes, the expected value of possible outcomes is assigned and at the decision 
nodes, the optimal decision is selected on the basis of the assumed decision criterion, 
which is usually the maximization of expected gains. 

3. Cumulative prospect theory 

Behavioural decision theory takes into account some psychological aspects of eval-
uating alternatives. As Kahneman and Tversky [6, 10] observed, decision makers com-
pare possible outcomes yi of a decision to a reference level yref and they express out-
comes as gains and losses relative to this reference point. In cumulative prospect theory 
(CPT), a decision D which has an outcome from a discrete distribution can be defined as 
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where xi = yi − yref represents a gain (xi > 0) or a loss (xi < 0) relative to the reference 
point yref and pi is the probability of obtaining the relative outcome xi. The decision D 
related to the random event A corresponds to the fragment of a decision tree shown in 
Fig. 1. 

 
Fig. 1. Decision D related to the random event A as a fragment of a decision tree 

Another behaviour of decision makers is that they subjectively evaluate relative 
outcomes, treating relative gains and relative losses in a different way. They exhibit risk 
aversion in the face of gains, but are risk seeking in the face of losses. Moreover, they 
exhibit loss aversion. Such behaviour can be expressed by an S-shaped value function 
of the following form [10]: 
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The values of the parameters  and  were estimated to be 0.88 based on the research 
of Kahneman and Tversky [10]. The loss aversion ratio,  = 2.25, models a decision 
maker’s perception, according to which “losses loom larger than gains” [6, p. 279]. 

Decision makers also subjectively evaluate probabilities. They overestimate small 
probabilities and underestimate moderate and large ones. Their observed behaviour can 
be modelled by a probability weighting function of the form 

 
  1/( )

(1 )

pw p
p p



 


 
 (3) 

where   = 0.61, if a probability concerns a relative gain and   = 0.69 in the case of a rel-
ative loss. 
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The functions given in Eqs. (2) and (3) are not the only ones that have been applied. 
For other propositions of the value function and the probability weighting function 
which have the required properties see [3, 5, 8, 9, 11]. Originally, prospect theory intro-
duced by Kahneman and Tversky [6] proposed a method of evaluating a decision with 
at most two possible non-zero relative outcomes. This theory turned out to be incon-
sistent with stochastic dominance. Cumulative prospect theory [10] overcame these 
shortcomings. It is consistent with stochastic dominance and can be used in the evaluation 
of decision with more than two possible outcomes. More information about the differ-
ences between prospect theory and cumulative prospect theory can be found in [4]. 

Based on the cumulative prospect theory, the valuation of a decision D (Eq. (1)) 
corresponding to a random event A is the sum of the valuation of the relative losses 
CPT−(A) and the valuation of the relative gains CPT+(A), see [10], i.e. 

 CPT( ) CPT ( ) CPT ( )A A A    (4) 

The components CPT−(A) and CPT+(A) are calculated as follows: 
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If the possible outcomes of a decision involve only gains or only losses, Eq. (4) 
reduces to the evaluation of only gains or only losses, accordingly. When comparing 
two risky decisions on the basis of cumulative prospect theory the preferred one is that 
with the higher CPT value. 

4. Analysis of a complex decision tree based on CPT 

In the analysis of complex decision problems, decision makers often have to com-
pare the random outcomes of decisions with a non-random final outcome. All evalua-
tions should be expressed in the same units. There is no problem if the analysis is based 
on the expected monetary value, since the evaluation of each alternative is expressed in 
monetary units. However, if an evaluation is based on cumulative prospect theory, the 
valuation of a risky decision (with an uncertain outcome) is a number that is not ex-
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pressed in monetary units and so cannot be directly compared to the deterministic mon-
etary outcomes. Based on the theory of expected utility the value of a certain prospect 
that yields the same utility as the expected utility of an uncertain prospect is called the 
certainty equivalent [7]. In cumulative prospect theory, the certainty equivalent of a risky 
decision can be defined in a similar manner, as the deterministic monetary value whose 
valuation is the same as the CPT valuation of a risky decision. This means that 

 ( ( )) CPT( )v CE A A  (7) 

where v() is the value function given by Eq. (2) and thus 

 1
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A certainty equivalent is assigned to each alternative with a random outcome and 
such alternatives can then be compared with non-random final outcomes. 

 
Fig. 2. Example of a complex decision tree 
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In complex decision trees, there are many decision nodes and chance nodes. After 
any decision node, other decision nodes, chance nodes, and leaves may occur. Similarly, 
after any chance node, other chance nodes, leaves, or decision nodes may also occur. 
Only after a leaf node (end node) can no other node occur. An example of a complex 
decision tree where alternatives have random outcomes is presented in Fig. 2. For the 
sake of clarity, the names of the nodes and branches, as well as the probabilities and 
outcomes corresponding to the end nodes are omitted. On the other hand, some frag-
ments of the tree are highlighted. These fragments are referred to in the description of 
the procedure for analysing decision problems based on cumulative prospect theory. 

The analysis of a complex decision tree starts from chance nodes and decision nodes 
whose branches lead only to end nodes. These nodes are assigned values. Then the pre-
ceding nodes are analysed in sequence up to the root. The following procedure is de-
scriptive insofar as there is no indexing of chance, decision or end nodes, or of final 
outcomes and probabilities. The symbols and indices relate to the fragment of the tree 
shown in the corresponding figure. In the following procedure, it is assumed that the 
decision maker wants to maximize the certainty equivalent of the outcome: 

1. All of the chance nodes whose branches lead only to end nodes (leaves) are con-
sidered. A suitable part of such a decision tree is shown in Fig. 3. 

 
Fig. 3. Chance node whose branches lead only to end nodes 

For each such chance node, the CPT(A) is calculated (Eqs. (4)–(6)) and then its 
certainty equivalent (Eq. (8)) is assigned to that chance node. 

2. All of the decision nodes whose branches lead only to end nodes (leaves) are now 
considered. Figure 4 shows such a decision node. 

 
Fig. 4. Decision node whose branches lead only to end nodes 
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The final outcome of the best alternative is assigned to each such decision node: 

 
{1, ..., }

( ) max { }t

t T
V D x


  (9) 

where T is the number of available alternatives and x1, ..., xT are the final outcomes. 
3. Other decision nodes whose branches lead to other decision nodes and/or chance 

nodes and/or end nodes are now taken into account, as long as the succeeding nodes 
have all been assigned a value. An example of such a decision node is shown in Fig. 5. 

 
Fig. 5. Decision node 

The value of the best alternative is assigned to each decision node: 

 1
1 1( ) max{ ( ), ..., ( ), ( ), ..., ( ), , ..., }T

S KV D V D V D CE A CE A x x  (10) 

where: S is the number of alternatives leading to other decision nodes, K is the number 
of alternatives leading to chance nodes, V(D1), ..., V(DS) are the values assigned earlier 



 R. DUDZIŃSKA-BARYŁA 

 

12

to the decision nodes D1, ..., DS, CE(A1), ..., CE(AK) are certainty equivalents assigned 
earlier to chance nodes, x1, ..., xT are final outcomes assigned to end nodes. 

4. Other chance nodes whose branches lead to other chance nodes and/or decision 
nodes and/or end nodes are now taken into account, as long as the succeeding nodes 
have all been assigned a value. Figure 6 shows an example of such a chance node. 

 
Fig. 6. Chance node 

For each such chance node A, CPT(A) is calculated by first sorting the set CE(A1), ..., 
CE(AK), x1, ..., xT, V(D1), ..., V(DS) in ascending order. Then a certainty equivalent CE(A) 
can be assigned to a given chance node. 

5. Steps 3 and 4 are repeated till all nodes have values assigned to them. 
6. The solution to the complex decision tree is read starting from the root node. At 

each decision node, the best decision is kept, while the others alternatives as well as the 
parts of the tree following these alternatives, are discarded. The value assigned to the 
root node expresses the subjective monetary valuation of the best combination of deci-
sions selected, while taking into account random events at chance nodes. 

The following example illustrates the application of this procedure. 
 
Example 1. How can the number of tourists coming to a city be increased?2 

 _________________________  
2 This example is inspired by the model for deciding how a city should be promoted, published on 

https://github.com/SilverDecisions/SilverDecisions/wiki/Gallery#city-promotion-decision-model 
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A community considers two alternative strategies: a traditional one and applying to 
become a European Capital of Culture. The traditional alternative involves commer-
cials, leaflets, advertising gadgets, etc. It would cost $ 100 000 and cause an increase in 
the number of tourists by 7% ($ 110 000 additional income) with probability 0.80 or by 
10% ($ 145 000 additional income) with probability 0.20. The second alternative re-
quires investments that would cost $ 250 000. Obtaining the title of European Capital 
of Culture is not guaranteed. The chance of success is estimated at 40%. Should the 
community fail, the number of tourists will increase by only 5% ($ 100 000 additional 
income). In the case that the city becomes a European Capital of Culture, the number of 
tourists increases by 30% ($ 300 000 additional income) with probability 0.25 or by 
60% ($ 1 000 000 additional income) with probability 0.75, depending on other random 
factors. 

 
Fig. 7. Decision tree for city promotion problem 

Figure 7 presents the decision tree for the city promotion decision problem. The 
final outcomes include the costs of each promotional action. Inclusion of the costs of 
action are necessary, since their omission means a change in the reference point, which 
usually causes a change in the valuation of an alternative [2]. In this decision problem, 
only one decision has to be taken concerning the way of promoting the city. The com-
plexity of the problem lies in two chance nodes following one after the other (A2 and A3). 
Based on cumulative prospect theory, such a pair of chance nodes cannot be combined 
together because the probability weighting function is not linear and the combination of 
the transformations of two probabilities does not equal the transformation of the com-
bination of these two probabilities. 

In step 1, the values of two chance nodes, A1 and A3, are calculated. Due to the fact 
that the outcomes of A1 and A3 involve only gains, Eq. (4) is simplified to value only 
gains. 
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         
1 1CPT( ) CPT ( )

10 000 1 0.20 45 000 0.20 5691.79

A A

v w w v w



      
 

0.88
1( ) 5691.79 $ 18 506.66CE A    

         
3 3CPT( ) CPT ( )

50 000 1 0.75 750 000 0.75 89 956.03

A A

v w w v w



      
 

0.88
3( ) 89 956.03 $ 426 167.10CE A    

Step 2 is skipped, because there is no decision node whose branches lead only to end 
nodes. Step 3 is also omitted, because the calculations for decision node D cannot be done 
until the certainty equivalent for chance node A2 is obtained, which is done in step 4. In the 
valuations for chance node A2, the certainty equivalent for chance node A3 is used. 

       
2 2 2CPT( ) CPT ( ) CPT ( )

150 000 0.60 426 167.10 0.40 8549.98

A A A

v w v w

  

    
 

0.88
2( ) ( 8549.98) / 2.25 $ 11 693.24CE A        

Now the valuation for decision node D can be obtained (as described in step 3). The 
certainty equivalent of the traditional alternative is 18 506.66, while the certainty equiv-
alent of the other alternative is −11 693.24. The best alternative for the community, 
based on this behavioural evaluation, is to promote the city in a traditional way. 

If the community evaluates both alternatives based on the expected monetary value, 
then the values assigned to the chance nodes are as follows: 

1EMV( ) 0.80 10 000 0.20 45 000 $ 17 000A       

3EMV( ) 0.25 50 000 0.75 750 000 $ 575 000A       

2EMV( ) 0.40 575 000 0.60 ( 150 000) $ 140 000A       . 

The higher expected monetary value corresponds to applying to become a European 
Capital of Culture, thus this decision should be taken on the basis of the EMV criterion. 
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The criterion based on CPT valuation indicates the opposite alternative to the one 
based on EMV, because CPT places a lot of weight on possible losses (due to the loss 
aversion parameter) and even the possibility of a very high income cannot compensate 
for the fear of losing. 

5. Example of using other criteria 

The procedure described in Section 4 can also be used with other criteria in which 
some transformation of outcomes are applied, e.g., the theory of expected utility. The 
concept of certainty equivalent is useful in the analysis of complex decision trees based 
on such approaches. For example, if the decision maker’s utility from the relative out-
come is described by an exponential function of the form 

 ( ) xu x e    (11) 

then he is risk averse if  > 0. The expected utility of decision D (given by Eq. (1)) 
corresponding to a random event A is as follows: 

 
1

( ) ( )
N

i i
i

U A p u x


  (12) 

The certainty equivalent for a decision with a random outcome based on the expo-
nential utility function is given by 

 ln( ( ))( )U
U ACE A



   (13) 

Using Equations (11)–(13) and  = 1000, the certainty equivalents assigned to the 
chance nodes in Example 1 are given by: CEU(A1) = $ 10 223.14, CEU(A3) = $ 513 86.29 
and CEU(A2) = − $ 149 489.17. This means that the community should choose the tra-
ditional way of promotion. 

6. Conclusions 

The optimal decisions chosen on the basis of a behavioural approach often differ 
from optimal decisions based on the objective criterion of maximizing the expected 
monetary value. The approach proposed in the procedure uses the subjective valuations 
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of relative outcomes and their probabilities and allows us to analyse complex decision prob-
lems in accordance with the decision maker’s attitude towards risk (based on an S-shaped 
value function), losses (loss aversion parameter) and probabilities (overestimating low 
and underestimating moderate and high probabilities).The concept of a certainty equiv-
alent allows us to compare random and non-random outcomes based on cumulative pro-
spect theory, as well as other criteria that non-linearly transform outcomes or probabil-
ities. 
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